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Abstract—Stability certification of microgrids can be challeng-
ing due to the lack of information on exact values of system
parameters. Moreover, full-scale direct stability analysis for
every system configuration can be economically and technically
unjustified. There exist a demand for simple conditions imposed
on system components that guarantee the whole system stability
under arbitrary interconnections. Most of existing methods are
relying on the so-called passivity property which can be difficult
to realize by all the system components simultaneously. In
the present manuscript we develop an approach for certifying
the system stability by separately considering its properties in
different regions of frequency domain. We illustrate our method
on the case of droop-controlled inverters and show that while
these inverters can never be made passive, reasonable stability
certificates can be formulated by careful consideration of their
input admittance for different frequency regions. We discuss the
generalization of the method for different types of microgrid
components.

Index Terms—Small-signal stability, microgrids, dissipativity,
plug-and-play.

I. INTRODUCTION

Microgrids are becoming an increasingly popular topic
for both academic and industrial society [1]. The advances
in power electronics technologies have lead to significant
decrease in renewable generation costs which inspired dis-
cussions about splitting the existing distribution grids into
autonomous systems. Subsequently, there have been a sig-
nificant progress in development of control architectures for
power electronics-interfaced generation allowing for flexible
microgrid operation [2], [3]. It was soon realized that control
methods that were standard for large scale power systems
have rather limited applications in microgirds due to sta-
bility constraints [4]. Moreover, modelling approaches (ex.
modelling based on time-scale separation) routinely used for
conventional power systems appeared to be inadequate for
microgrids, which demands for new modeling techniques to
be developed [5].

It is always possible to refer to full-scale dynamic models
for stability analysis of microgrids, directly calculating the
eigenvalues of the state matrix for specific operating point.
However, such an approach assumes the full knowledge of
system configuration which is much less likely for a microgrid
than for a conventional power system. Moreover, performing
full-scale stability analysis for every possible microgrid config-
uration is most likely economically and technically unjustified.
There is, therefore, the need for simple but reliable stability
certificates that can be routinely used for a wide class of
microgrid configurations. Ideally one thinks about developing

of specific standards for typical microgrid components that
will allow stable operation under arbitrary interconnection.

In our recent work [6] we have developed a low-dimensional
model for inverter-based microgrids which allowed us to
uncover the main sources of instabilities and paved the way
towards development of completely decentralized intercon-
nection rules for such systems [7]. However, our methods
were still reliant on rather specific dynamic models of system
components (namely, droop-controlled inverters) and assumed
at least partial knowledge about the system configuration. As
any other method based on certain dynamic models, it requires
specific extension in order to include new types of components
(ex. current source inverters, synchronous machines etc.) and
assumes the knowledge of their control settings. Moreover, sta-
bility certificates formulated in [7], while being decentralized,
depend not only on the settings of the system components, but
also on their interconnection.

The celebrated concept of dissipative dynamic systems [8],
[9] allows for formulation of stability certificates for the whole
system through the separate consideration of its components:
if every component of the system is dissipative, then the
whole system is also dissipative, therefore stable, irrespective
to the way components are interconnected. A more specific
passivity property has allowed the formulation of rather simple
(although not always easily realisable) constraints on input
admittance/impedance of power system components [10]–[12].
The advantage of such an approach is that input admittances
of individual components does not have to be known but can
simply be measured. However, it is not straightforward to
apply the method to components that are not passive and can
not be made so by simple adjustments of their control settings.

In the present manuscript we develop a method for stability
certification based on a special type of dissipativity approach
that relies on different certificates in different regions of
frequency domain. It is especially applicable for systems that
are not naturally passive (and can not be made so by simple
adjustment of their control settings). We illustrate our method
on the example of inverter-based microgrids, and discuss how
it can be generalized to arbitrary systems.

II. ADMITTANCE REPRESENTATION

In this section we describe the concept of small-signal
effective admittance that are then used to develop stability
certificates. Let us consider a 3-phase AC power system
(single-phase systems can be treated in a similar way) with
arbitrary types of loads and generators and assume that the
system has some equilibrium operating frequency Ω0.



Let us start from representing bus voltages and line currents
as 3-component vectors, for example voltage at any bus:

V(t) = [Va(t),Vb(t),Vc(t)]T (1)

where we explicitly indicate t as an argument to emphasize
that we are still in time domain. In order to perform stability
analysis it is convenient to first switch to the so-called d− q
representation in a synchronous reference frame, rotating with
equilibrium frequency Ω0:

V (t) = [Vd(t), Vq(t)]T = TVabc(t)e−jΩ0t (2)

where transformation matrix T is [11]:

T =

√
3

2

 2
3 0
− 1

3
1√
3

− 1
3 − 1√

3

T

(3)

Line currents are transformed in similar way. The convenience
of such transformation is that at equilibrium all the d−q volt-
age and current vectors are constant. If all the power system
components are symmetric then d− and q− components can be
represented as real and imaginary parts of the corresponding
complex variable [11]. In this manuscript we will be dealing
with both symmetric and unsymmetric components, and there-
fore, we will follow the vector representation.

We further introduce the small-signal variations of voltage
and current:

Vi(t) = V 0
i + vi(t); Iik(t) = I0

ik + iik(t) (4)

where the superscript 0 marks the equilibrium values and
subscript i refers to bus number while subscript ik refers
to line between buses i and k. In the rest of the manuscript
we will refer to small-signal perturbations simply as voltage
and current. Both vi(t) and iik(t) are 2-dimensional vectors
obtained similarly to (2).

Let v = [v1, v2, ...vN ]T be the 2N dimensional vector
(N - is the total number of buses in the system) of bus
voltages and iL = [iL1, iL2, ...iLN ]T be the vector of load
currents, we assume the positive direction for this current to
be from the node to the ground (through the load). Similarly
to conventional phasor representation, bus voltages and load
currents (generators are also included in the “load” set) in
Laplace domain are related by the network admittance matrix
YN :

iL = −YN (s)v (5)

Since both voltages and line currents are 2-dimensional
vectors, admittances of individual lines yik are 2×2 matrices,
rather than just complex numbers. Throughout the rest of the
paper we will use bold lower-case letters to denote 2 × 2
matrices. The network admittance matrix YN is composed
from these blocks (explicit expressions for blocks yik are
presented in Sec. IV-A) according to conventional rules: non-
diagonal blocks are the negative admittances of corresponding
lines (or zero if there is no line between corresponding buses),

and the diagonal blocks are the sums of the admittances of all
the lines connected to the bus [13]:

YN =


∑
k

yik . . . −yik

...
. . .

...
−yik . . .

∑
i

yik

 (6)

Thus YN is a 2N × 2N matrix.
On the other hand, load current vector can be written in

terms of the load admittance matrix YL which has load input
admittances as diagonal blocks and zeros elsewhere: YL =
diag(y1 . . .yN ). Then the relation between voltage and load
current is:

iL = YL(s)v (7)

Let us also denote simply as Y the sum of network and load
admittance matrices. Then, combining (5) and (7) we have:

Y(s)v = [YN (s) + YL(s)] v = 0 (8)

that should be satisfied for any bus voltage vector v in the
absence of external disturbances to the grid.

III. STABILITY CERTIFICATES

In this section we formulate stability certificates using the
system admittance matrix Y and show how these certificates
can be made completely decentralized. Our method is along
the lines with the celebrated dissipativity concept, however, we
formulate it here from the basic principles in order to make the
approach more transparent. Detailed discussion of equivalence
of this method to the method of dissipative systems is the
subject of subsequent publications.

A. General Formulation in Terms of Admittance Matrix

We start by noticing that every voltage vector v satisfying
(8) corresponds to one eigenmode of the system. Since equa-
tion (8) has nontrivial solutions only for values of s = s0

for which the determinant of admittance matrix is zero, the
time-domain dynamics of any eigenmode can be written as:

v(t) = v(0)es0t (9)

This leads us to the following theorem:

Theorem 1. The system described by the admittance matrix
Y is stable if and only if all the roots s0 of the equation

det [Y(s)] = 0 (10)

lie in the left-hand side of the complex plane.

Proof. The system is small-signal stable if all of its eigen-
modes decay with time in the absence of external pertur-
bations. According to equation (9) the decay rate of any
eigenmode is determined by the real part of s0 which is one
of the solutions of equation (10). Therefore, if Re[s0] < 0 for
all s0, the system is stable.

While Theorem 1 gives the necessary and sufficient condi-
tion for stability of the system its use is equivalent to direct



analysis of the system state matrix and does not bring any
practical advantage. In order to derive practically convenient
stability conditions, we first notice, that if the system settings
change from a stable to an unstable point, one or more
solutions of the equation (10) cross the imaginary axis. Let us
now introduce some parameter α that parametrizes the system
settings with α = 0 corresponding to a definitely stable set up
and α = 1 to the target set up for which stability has to be
certified. The following theorem allows one to certify stability
of the system by screening the determinant of the admittance
matrix over real values of frequency, corresponding to s = jω,
rather than finding complex roots s0.

Theorem 2. The system described by the admittance matrix
Y is stable if and only if:

det [Y(ω, α)] 6= 0 (11)

for all real ω and all α ∈ [0, 1].

Proof. Since the system is stable for α = 0 all the roots of
equation (10) are in the left hand plane. If condition (11) is
satisfied while α increases from 0 to 1 then none of the roots
have moved to the right plane, so the system remains stable.

Remark 1. Condition (11) remains valid if Y is multiplied
by arbitrary non-singular matrices, which in general can
be functions of frequency and α. Thus, we can write the
generalization of coondition (11) as:

det [MY(ω, α)Γ] 6= 0 (12)

where M(ω, α) and Γ(ω, α) are arbitrary non-singular ma-
trices.

Consider now a system which is composed from two or
more subsystems for every one of which stability is certified.
The admittance matrix of the whole system can always be
split into the sum of matrices each related to one subsystem.
However, the use of either (10) or (12) is not straightforward
since there is no simple way to relate the determinant of
the full admittance matrix to determinants of its submatrices
corresponding to individual subsystems. However, instead of
demanding admittance matrix being non-singular, one can de-
mand it’s Hermitian part to be positive definite. This condition,
known as passivity, possesses the “addittiveness” property: if
all the components of a system are passive, than the whole
system is also passive, therefore - stable. However, equation
(12) allows to formulate an even more general sufficient
stability condition:

Theorem 3. If there exist two matrices M(ω, α) and Γ(ω, α)
such that for any real ω and all values of α ∈ [0, 1] the
following conditions are satisfied:

det [M(ω, α)] 6= 0; det [Γ(ω, α)] 6= 0 (13)[
(MYΓ) + (MYΓ)

†
]
� 0 (14)

then the system is stable.

Proof. Suppose that Y is singular for some values of ω and
α. Then MYΓ is also singular for any choice of M and Γ
(as long as they are both non-singular), so the matrix in the
left of (14) has at least on zero eigenvalue, therefore, can not
be strictly positive definite whatever the choice of M and Γ
is.

Theorem 3 can be interpreted both ways. Thus if the system
is stable, there necessarily exist some matrices M and Γ (in
fact families of such matrices) that satisfy (13) and (14) (apart
from ). To see this, one can consider a simple choice: M = Y†

and Γ = I, so that (14) becomes:

2Y†Y � 0 (15)

which is equivalent to (11).

B. Decentralized Stability Certificates

The key to formulating decentralizaed stability conditions
lie in the fact that the system admittance matrix can be easily
split into a sum of matrices, with each one responsible for
either single load or single line (we will refer to them as
component matrices):

Y =
∑
i,k

Yik
N +

∑
i

Yi
L (16)

Here Yik
N and Yi

L are the matrices with non-zero element
corresponding only to line ik and load i respectively. Each
network component matrix Yik

N has only four non-zero blocks
(see (6)) - two diagonal and two off diagonal, while each load
component matrix Yi

L - only one diagonal non-zero block.
If one now chooses the factors M and Γ in such a way that

the property (16) still holds for the resulting MYΓ matrix -
one can apply condition (14) separately to every term in (16),
i.e. to every component of the system. One of such choices
for M and Γ are block diagonal matrices (composed of 2× 2
blocks). In the present manuscript we will analyze the case
when M = diag(m, . . .m) - all diagonal blocks are equal to
the same 2×2 matrix m, and Γ = I. In this case the resulting
component matrices for each line will be composed of blocks
myik:

MYik
N =

 myik −myik . . .
−myik myik . . .
. . . . . . . . .

 (17)

where we have moved all the non-zero blocks to the upper-left
corner. Two eigenvalues of this matrix a doubled eigenvalues
of matrix myik and all the rest are zero. Therefore, this matrix
is positive semi-definite whenever the matrix myik is positive
(semi)-definite. Transformation of the component matrices for
loads from (16) is even simpler, their diagonal blocks just
become myi.

Remark 2. Since each component matrices from (16) have
all elements zero except for those referring to one bus (for
load matrices Yi

L ), or pair of buses (for line matrices Yik
N ),

all of these matrices have zero eigenvalues. However, as long
as condition (14) is satisfied for every load input admittance



matrix yi, component matrices Yi
L have no common null-

vectors, so that (14) is satisfied for the full admittance matrix.

IV. INVERTER-BASED MICROGRIDS: ADMITTANCE
MATRIX

In this section we will derive explicit expressions for admit-
tance matrix of the components of inverter-based microgrids.
We assume that system consists of a number of droop-
controlled inverters and a number of constant impedance loads.

A. Line and load admittances

The blocks yik from the system admittance matrix corre-
sponding to lines can be directly obtained from time-domain
Kirschoff’s equations for small-signal variations of current and
voltage. For the line current between buses i and k we have
(we omit the subscript ik for current and line parameters to
simplify denotations):

L
did
dt

= vd,i − vd,k −Rid + ω0Liq (18a)

L
diq
dt

= vq,i − vq,k −Riq − ω0Lid (18b)

In the frequency domain we have:

i(ω) = yik(ω) [vi(ω)− vk(ω)] (19)

with the following expression for yik:

yik =

[
R+ jωL −X

X R+ jωL

]−1

(20)

where X = ω0L. This expression is also valid for the
admittance matrix of a passive load.

B. Inverter input admittance

We assume that inverter terminals are connected to the
system buses via certain impedances which, in general, is
the combined virtual impedance, coupling impedance, and
possibly connecting line. We will refer to this combined
impedance simply as coupling impedance and denote it as zc.
Let E, Θ, and Ω denote the magnitude, angle, and frequency
of inverter terminal voltage. The following equations describe
the time-domain dynamics of a droop-controlled inverter [6]
(we omit the subscript i denoting the inverter number):

dΘ

dt
= Ω− Ω0 (21a)

τ
dΩ

dt
= Ω∗ − Ω− npP (21b)

τ
dE

dt
= E∗ − E − nqQ (21c)

here P and Q are instantaneous values of real and reactive
power discharged by the inverter, and kp and kq are frequency
and voltage droop coefficients respectively. Constants Ω∗ and
E∗ are the frequency and voltage set-points respectively and
τi is the inverse of the power controller filter cut-off frequency
wci (it is typically around 31.41 rad/s for 50Hz grids).

As previously, let the lower-case letters denote small-signal
variations of corresponding variable. Thus θ, ω, e, p, and q

Fig. 1. Inverter connected to a grid node: vd and vq are small-signal variations
of grid node voltage while ed and eq are variations of inverter terminal
voltage. The combined coupling and virtual inductance and resistance are
Lc and Rc respectively.

are the variations of inverter terminal angle, frequency, voltage
magnitude, real and reactive power output respectively. In
writing the small-signal representation of equations (21) we
take into account that inverters typically operate at very low
values of terminal angle and voltage variation due to small per
unit values of coupling impedance (for details see [6]). In this
case we have the following simple relations (we assume that
the nominal voltage is 1 pu):

eq = θ; ed = e (22a)
p = id; q = −iq (22b)

Where ed, eq , iq , and iq are d and q components (in small-
signal sense) of inverter terminal voltage and inverter current
(Fig. 1). Then the small-signal approximation of equations (21)
becomes:

τ
d2eq
dt2

+
deq
dt

= kpid (23a)

τ
ded
dt

+ ed = −kqiq (23b)

From this we get the effective admittance matrix of inverter
controls yctrl that links terminal voltage and inverter current
[id, iq]T = yctrl[ed, eq]T . The explicit expression for yctrl is:

yctrl =

[
0 − kq

1+jω

− kp

ω2−jω 0

]−1

(24)

In order to get the full inverter input admittance we note that
the coupling impedance is connected in series with the inverter
and has the admittance given by (20). Therefore, for inverter
i input admittance we have:

yi =

[
Rc + jωLc −Xc − kq

1+jω

Xc − kp

ω2−jω Rc + jωLc

]−1

(25)

where the subscript c means that the corresponding parameter
refers to coupling impedance.

V. STABILITY OF INVERTER-BASED MICROGRIDS

We are now in the position to construct fully decentralized
stability certificates that are valid for inverter-based microgrids
of arbitrary size. First, we introduce to our system parameter
α according to (11). A simple choice is to multiply both kp
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Fig. 2. Eigenvalues of (y + y†)/2 for line admittance (20) (dashed blue)
and inverter admittance (25) (red).

and kq coefficients in (25) by α, so that α = 0 corresponds
to a definitely stable system.

As the base case we use the system with the following
parameters. Total coupling resistance and inductance of in-
verter are Rc = 0.01 pu and Xc = 0.015 pu respectively
(per unit values of impedances in inverter-based microgrids
are always small [6]). Inverter frequency droop coefficient
kp = 1.3 · 10−3 pu (0.13%) and voltage droop coefficient
kq = 7.5 · 10−3 pu (0.75%). Network lines inductance and
resistance values are chosen the same as corresponding inverter
coupling inductance and resistance, however, particular values
of network parameters do not influence stability certificates
that we present in this section.

We start by choosing m = I which corresponds to conven-
tional passivity condition. Fig. 2 shows the eigenvalues σ of
(y + y†)/2 as functions of frequency for inverter admittance
matrix from (25), and line admittance matrix from (20). At
frequencies ω > Ω0 eigenvalues of both matrices remain
positive1 for any values of coupling impedance and inverter
droop coefficients. We notice, that eigenvalues corresponding
to line admittance matrix as well as to constant impedance load
are always positive (irrespective of values of inductance and
resistance), which means that these components are passive.
Droop-controlled inverter, however, is not passive and can not
be made passive by adding more virtual/coupling impedance or
by reducing droop coefficients - standard ways for enhancing
stability of such inverters. One of the eigenvalues correspond-
ing to matrix (25) always stays negative for low values of ω.

From Fig.2 we notice, that eigenvalues corresponding to
line admittance matrix, as well as constant impedance load
admittance matrix are always positive, which means that these
components are passive. Droop-controlled inverter, however,
is not passive and can not be made passive by adding more
virtual/coupling impedance or by reducing droop coefficients
- standard ways for enhancing stability of such inverters. One
of the eigenvalues corresponding to matrix (25) always stays
negative for low values of ω.

1Eigenvalues in Fig.2 approach zero as ω → +∞. This issue can be
resolved by placing a small shunt capacitor in parallel with inverter (which
makes both eigenvalues to stay positive), since all real networks always have
shunt capacitance present naturally.
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Fig. 3. Eigenvalues of [(my) + (my)†]/2 with m given by (26) and line
admittance from (20) (dashed blue) and inverter admittance from (25) (red).

Remark 3. Another example of a system that can not be made
passive is DC constant power load (CPL) realized by a power
electronics converter. A practical way to stabilize the grid with
such loads is to place capacitors to load buses. However, this
will not make the CPL’s passive: irrespective of the capacitor
size the real part of the combined input admittance of load and
capacitor will still be negative for sufficiently small frequencies
[14].

In order to certify stability of the inverter from (25) we now
need to find some matrix m that will make both eigenvalues
of (myi)+(myi)

† positive. However, it is sufficient to do this
only for small frequencies, where the choice of m = I can not
provide the needed certificate. Fig. 3 shows the eigenvalues 2

for the system with the following choice of m:

m =

[
0 −1
1 0

]
(26)

One of the eigenvalues corresponding to both inverter and line
always becomes negative for ω = Ω0 which is irrelevant to
us, since in this frequency region stability is already certified
by m = I (Fig.2).

Thus, with a simple choice of matrix m for different
frequency regions we were able to certify stability of an
inverter-based microgrids with parameters specified above. We
note, that our certificates can be applied to systems with
arbitrary number of inverters and constant impedance loads,
with network parameters taking any values while the values
of inverter coupling impedance should be fixed. The voltage
and frequency droop coefficients should be less or equal to
the above specified values: kp = 1.3 · 10−3 pu (0.13%), and
kq = 7.5·10−3 pu (0.75%). We note that these limits are rather
conservative for the chosen values of coupling impedance and
a more diligent choice of matrices M and Γ could provide a
better result.

We note, that the above limit on frequency droop coefficient
is rather tight from the practical point of view. Let us now
illustrate our method on the example of stability enhance-
ment by virtual impedance. It is known, that adding virtual

2One of the eigenvalues from Fig.3 for inverter is zero at ω = 0 due to
phase shift invariance of the system. This is regularized by introducing a small
secondary control term to inverter dynamic equation (21b)
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Fig. 4. Eigenvalues of [(my) + (my)†]/2 with m given by (26) and
inverter admittance (25) with (dashed blue) and without (red) additional virtual
impedance.

impedance to inverter control loop increases stability region in
terms of frequency and voltage droop coefficients [15]. Fig. 4
illustrates the stability certification for inverter with the total
value of Xc = 0.15 pu of coupling and virtual reactance (and
corresponding value of inductance). Such a set up allows one
to certify stability for the values of frequency and voltage
droop coefficients of kp = 1.5·10−2 pu (1.5%), and kq = 10−2

pu (1.0%) - the blue dashed curves in Fig. 4 correspond to
eigenvalues of [(my)+(my)†]/2 for system with these values
of parameters and m from (26). The red curve shows one
of the eigenvalues of the matrix [(my) + (my)†]/2 with the
specified values of droop coefficients but without additional
virtual impedance, for which stability can not be certified.

VI. CONCLUSION

We proposed an approach for stability certification of ar-
bitrary power grids by imposing separate conditions on its
components. Condition (14) allowed us to step beyond the
traditional passivity approach and use different certificates in
different regions of frequency domain. Thus, we showed that
a conventional droop controlled inverter can never be made
passive component, so there is now way to certify its stability
by demanding the positive definiteness of the Hermitian part of
its input admittance over the whole range of frequencies. On
the other hand a rather simple choice of the matrix M allowed
us to obtain reasonable stability certificates by separately
considering low and high frequency domains. The method
developed in this manuscript can be improved in several ways.

First, the analysis of different typical components for power
grids can be done similarly to the way droop-controlled
inverters were analyzed. It seems that synchronous machines,
current source inverters and induction machines will account
for the vast majority of possible components (in addition
to constant impedance loads and droop-controlled inverters)
of modern power grids. Diligent choice of matrices M and
Γ in (14) can provide certain compromise for simultaneous
stability certification of different types of components. It is
especially valuable for microgrids applications since their
stability certification by direct modelling can be unjustified and
formulation of simple, although conservative rules for main
components can be much more practical.

Second, several separate regions in frequency domains can
be considered (we have only consider two regions in the
present manuscript) depending on the components particular
input admittance. The intuition behind is that instabilities are
typically caused by just few control parameters and are asso-
ciated with modes in a rather narrow frequency region. One
can think about expanding the input admittances of system
components in power series around these critical frequencies
and obtaining analytic expressions for constraints on different
control settings.

Finally, it seems to be promising to consider the presence
of non-dissipative components as long as their supply rate can
be properly quantified and bounded. As a simple example one
can think about the choice of M and Γ that make the network
“active” with subsequent constraints on line parameters. Such
an approach can allow other components of the system to be
made more dissipative, so that the overall stability will be
certified with less conservativeness.
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